
PipeProof: Automated Memory Consistency Proofs
for Microarchitectural Specifications

Yatin A. Manerkar Daniel Lustig∗ Margaret Martonosi Aarti Gupta
Princeton University NVIDIA∗

{manerkar,mrm,aartig}@princeton.edu dlustig@nvidia.com

Abstract—Memory consistency models (MCMs) specify rules
which constrain the values that can be returned by load instruc-
tions in parallel programs. To ensure that parallel programs
run correctly, verification of hardware MCM implementations
would ideally be complete; i.e. verified as being correct across all
possible executions of all possible programs. However, no existing
automated approach is capable of such complete verification.

To help fill this verification gap, we present PipeProof, a
methodology and tool for complete MCM verification of an
axiomatic microarchitectural (hardware-level) ordering specifica-
tion against an axiomatic ISA-level MCM specification. PipeProof
can automatically prove a microarchitecture correct in all cases,
or return an indication (often a counterexample) that the mi-
croarchitecture could not be verified. To accomplish unbounded
verification, PipeProof introduces the novel Transitive Chain
Abstraction to represent microarchitectural executions of an arbi-
trary number of instructions using only a small, finite number of
instructions. With the help of this abstraction, PipeProof proves
microarchitectural correctness using an automatic abstraction
refinement approach. PipeProof’s implementation also includes
algorithmic optimizations which improve runtime by greatly
reducing the number of cases considered. As a proof-of-concept
study, we present results for modelling and proving correct
simple microarchitectures implementing the SC and TSO MCMs.
PipeProof verifies both case studies in under an hour, showing
that it is indeed possible to automate microarchitectural MCM
correctness proofs.

Index Terms—Memory consistency models, automated verifi-
cation, formal verification, happens-before graphs, abstraction
refinement.

I. INTRODUCTION

Memory consistency models (MCMs) specify rules which
constrain the values that can be returned by load instruc-
tions in parallel programs [1]. MCMs are defined at various
levels of the hardware-software stack, including program-
ming languages [15, 16, 25] and instruction set architectures
(ISAs) [3, 14]. An ISA-level MCM like x86-TSO [14] serves
as both a target for x86 compilers and a specification of what
x86 hardware must implement. A key challenge in parallel
hardware design is ensuring that a given microarchitecture
(hardware design) obeys its ISA-level MCM. If the hardware
does not respect its MCM in all possible cases, then the correct
operation of parallel programs on that implementation cannot
be guaranteed.

MCM bugs in hardware are becoming more common as
parallel processing becomes ubiquitous and implementations
increase in complexity. For example, two transactional mem-
ory bugs were discovered in recent Intel processors [11, 32].

One of these bugs was fixed by disabling the transactional
memory functionality entirely, reducing processor capabilities.
In addition, MCM bugs have been discovered in research
simulators [18], coherence protocols [9], and open-source pro-
cessors [23]. Furthermore, incorrect MCM implementations
can be leveraged to create security exploits [10].

The ramifications of MCM bugs in parallel processors
necessitate verifying that the hardware correctly implements
its MCM. Such verification would ideally be complete; i.e. it
would cover all possible executions of all possible programs.
However, truly complete verification is extremely difficult.
The only existing complete consistency proofs of hardware
are implemented in interactive theorem provers [7, 31], which
require significant manual effort.

Automated approaches could make it much easier for
microarchitects to verify their designs. However, no current
automated approach is capable of complete MCM verification.
Dynamic verification approaches [12, 26] only examine a
subset of the possible executions of any program they test,
so they are incomplete even for those programs. Formal
MCM verification approaches look at all possible executions
of the programs they check, but all such approaches that
are automated have only been able to conduct verification of
implementations for a bounded set of programs. The verified
programs in such an approach may be a suite of litmus tests1

which focus on the scenarios most likely to exhibit bugs [2,
18, 19, 23, 24, 30], or all programs smaller than a certain
bound (∼10 instructions) [33].

Critically, litmus test-based or bounded verification only en-
sures that the implementation will correctly enforce orderings
for the verified programs themselves. It does not ensure that
the implementation will correctly enforce required orderings
for all possible programs. These incomplete approaches have
missed important bugs because the set of programs they
verified did not exercise those bugs [33]. This necessitates
an automated approach capable of conducting complete MCM
verification of microarchitectural implementations.

To fill this need for complete microarchitectural MCM veri-
fication, we present PipeProof2, a methodology and automated
tool for unbounded verification of axiomatic microarchitectural
ordering specifications [19] against axiomatic ISA-level MCM

1Litmus tests are small programs used to test MCM implementations.
2open-source and publicly available at github.com/ymanerka/pipeproof.



specifications [2]. PipeProof uses an approach based on Sat-
isfiability Modulo Theories (SMT) [4] and Counterexample-
Guided Abstraction Refinement (CEGAR) [8]. PipeProof’s un-
bounded verification covers all possible programs, core counts,
addresses, and values. The key to PipeProof’s unbounded
verification is its novel Transitive Chain Abstraction, which
allows PipeProof to inductively model and verify the infinite
set of program executions that must be verified for a given
microarchitecture. As its output, PipeProof either provides a
guarantee that the microarchitecture is correct, or returns an
indication that the microarchitecture could not be verified.

The contributions of this paper are as follows:
• Beyond Litmus Tests: PipeProof is the first automated

microarchitectural MCM verification tool that is capable
of conducting complete verification of microarchitectural
ordering specifications against axiomatic ISA-level MCM
specifications.

• Abstraction for Modelling an Infinite Set of Execu-
tions: Verification of a microarchitectural design across
all possible programs requires reasoning about an infinite
number of possible executions. PipeProof’s Transitive
Chain Abstraction allows this infinite set of executions
to be modelled inductively, thus making complete mi-
croarchitectural verification feasible.

• Comprehensive Automated Verification of General
Microarchitectures: PipeProof’s algorithms and its
Transitive Chain Abstraction have broad applicability
across microarchitectures and ISA-level patterns. They
are not restricted to a particular microarchitecture or a
particular ISA-level MCM.

The rest of this paper is organised as follows. Section II
provides background on PipeProof’s two main inputs (ISA-
level MCM specification and microarchitectural ordering spec-
ification). Section III covers PipeProof’s procedure for prov-
ing microarchitectural correctness. Section IV presents the
supporting proofs and modelling techniques leveraged by the
microarchitectural correctness proof. Section V covers opti-
mizations that reduce PipeProof’s runtime, while Section VI
discusses our methodology, results, and ideas for future work.
Section VII discusses related work, and Section VIII, our
conclusions.

II. BACKGROUND INFORMATION

A. ISA-Level MCMs and Their Axiomatic Specification

Figure 1a shows the message-passing (mp) litmus test,
where core 0 communicates data (x) to core 1 by setting a
flag (y) to indicate when the data is ready. In the outcome
shown (r1=1,r2=0), core 1 observes the write to the flag
but not the write to the data. The ISA-level MCM of the system
dictates whether or not hardware should allow this behaviour.
For example, sequential consistency (SC) [17] requires results
that are consistent with a total order on all memory operations
where (i) each load reads from the latest store to its address
in the total order and (ii) each core performs its operations in
program order. Thus, SC forbids the execution of mp where

Core 0 Core 1
(i1) [x] ← 1 (i3) r1 ← [y]
(i2) [y] ← 1 (i4) r2 ← [x]

SC forbids r1=1, r2=0
(a) Code for litmus test mp

[x] ← 1

fr

[y] ← 1

r1 ← [y]

r2 ← [x]

rf
po po

(i4)

(i3)(i1)

(i2)

(b) ISA-level execution of mp forbidden under SC, due to the cycle
in the po, rf , and fr relations.

Fig. 1: Example litmus test mp and ISA-level execution of mp.

r1=1,r2=0 (as Figure 1a shows), because there is no total
order satisfying SC’s requirements that results in this outcome.

ISA-level MCMs are often defined axiomatically using a
model of relations between instructions in an execution, as
described by Alglave et al. [2]. Each individual relation be-
tween a pair of instructions represents some ordering relevant
to the MCM.

Definition 1 (ISA-Level Execution): An ISA-level execution
(Instrs,Rels) is a graph. Nodes Instrs are instructions,
and edges Rels between nodes represent ISA-level MCM
attributes.

Figure 1b shows the ISA-level execution for the outcome
of mp from Figure 1a. The po relation represents program
order, so i1

po−→ i2 and i3
po−→ i4 represent that i1 is before

i2 and i3 is before i4 in program order. The rf (reads-from)
relation links each store to all loads which read from that
store. For example, i2

rf−→ i3 represents that i3 reads its value
from i2 in this execution. The fr (from-reads) edge between
i4 and i1 enforces that the store that i4 reads from comes
before the store i1 in coherence order (a total order on same-
address writes in an execution). The co relation (not present
in Figure 1b) is used to represent coherence order. Other ISA-
level MCMs require extra relations to model reorderings and
fences [2].

In the relational framework of Alglave et al. [2], the permit-
ted behaviours of the ISA-level MCM are defined in terms of
the irreflexivity, acyclicity, or emptiness of certain relational
patterns. For example, SC can be defined using relational
modelling as acyclic(po∪ co∪ rf ∪ fr). This means that any
execution with a cycle in these four relations is forbidden.
The execution in Figure 1b contains such a cycle, and so is
forbidden under SC.

B. µspec Microarchitectural Specifications

PipeProof models microarchitectural executions using the
microarchitectural happens-before (µhb) graph model devel-
oped by the Check suite [18, 19, 23, 24, 30].

Definition 2 (Microarchitectural Execution): A microarchi-
tectural execution is a µhb graph (Instrs,N,E). Nodes N
represent individual sub-events in the execution of instruc-
tions Instrs. Edges E represent happens-before relationships
between nodes.



(i1) (i2)

IF

EX

WB

po
(i3) (i4)

fr

rf po

(a) µhb graph for mp’s forbidden outcome on simpleSC
microarch.

Axiom "IF_FIFO":
forall microops "a1", "a2",
(SameCore a1 a2 /\ ˜SameMicroop a1 a2) =>
EdgeExists((a1,Fetch)), (a2,Fetch))) =>
AddEdge((a1,Execute)), (a2,Execute))).

(b) µspec axiom expressing that the Fetch pipeline stage should
be FIFO on simpleSC.

Fig. 2: Example µhb graph for the mp litmus test and example µspec axiom.

Figure 2a shows an example µhb graph for the execution
of the mp litmus test (Figure 1a) where the load of y (i3)
returns 1 and the load of x (i4) returns 0 (i.e. r1=1,r2=0).
Above the µhb graph is the corresponding ISA-level cycle in
po∪co∪rf ∪fr (also seen in Figure 1b), showing that SC re-
quires this execution to be forbidden. The µhb graph represents
an execution of mp on a simple microarchitecture (henceforth
referred to as simpleSC) with 3-stage in-order pipelines.
The 3 stages in this pipeline are Fetch (IF), Execute
(EX), and Writeback (WB). Each column in the µhb graph
represents an instruction flowing through the pipeline. Each
node represents a particular instruction at a particular mi-
croarchitectural location. For instance, the leftmost node in
the second row represents instruction i1 at its Execute stage,
while the second node in the second row represents instruction
i2 at its Execute stage. The edge between these two nodes
enforces that they pass through the Execute stage in order, as
required by the in-order pipeline. All µhb edges are transitive.
Thus, a cyclic µhb graph implies that an event must happen
before itself (which is impossible), so it is an execution that
is unobservable on the target microarchitecture. Likewise, an
acyclic µhb graph represents an execution that is observable on
the target microarchitecture. The graph in Figure 2a is cyclic,
so this microarchitectural execution is unobservable, as SC
requires.
µhb graphs can be constructed according to microarchi-

tectural axioms written in µspec, a domain-specific language
similar to first-order logic [19]. A microarchitectural ordering
specification is provided to PipeProof as input as a set of µspec
axioms. These axioms specify which nodes (events) exist in
a given execution and what edges (orderings) exist between
those nodes. A set of µspec axioms thus constitutes a design
description of microarchitectural orderings. Figure 2b shows
an example µspec axiom which enforces that the Fetch
pipeline stage is FIFO on simpleSC. The axiom applies
to all pairs of instructions a1 and a2 that are on the same
core (SameCore a1 a2) where a1 and a2 are distinct
instructions (˜SameMicroop a1 a2). For such pairs of
instructions, if an edge exists between their Fetch stages (as
denoted by the EdgeExists predicate), then an edge must
also exist between their Execute stages (signified by the
AddEdge predicate) to fulfill the requirements of the axiom.
In the case of the µhb graph in Figure 2a, i1 and i2 constitute

Microarchitecture 
Ordering Spec.

ISA-Level 
MCM Spec.

PipeProof

ISA Edge -> Microarch. 
Mapping

Result: µarch Proven?
Counterexample found?

Chain 
Invariants

TC Abstraction 
Support Proof

Microarch. 
Correctness 

Proof

Cex. Generation

Proof of 
Chain Invariants

Pass

Fail

§ II-B § II-A § III-B § IV-B

§ IV-B

§ III

§ IV-A

§ IV-A

Pass

Fail

Fig. 3: High-level block diagram of PipeProof operation.
Components are annotated with the sections in which they
are explained.

i1 i2

IF

EX

WB

po
i1 i2

IF

EX

WB

rf
i1 i2

IF

EX

WB

fr
i1 i2

IF

EX

WB

co

Fig. 4: ISA-level relations can be analysed in terms of how a
given microarchitecture enforces them. These four µhb graphs
show the µhb edges between instructions that are enforced
(directly or indirectly) by the mappings of ISA-level edges to
the simpleSC microarchitecture.

a pair of distinct instructions on the same core with an edge
between their Fetch stages; thus, the axiom adds an edge
between their Execute stages. Instructions i3 and i4 also
satisfy the axiom’s conditions on a1 and a2, and so an edge
is added between their Execute stages as well.

III. PIPEPROOF OPERATION

Figure 3 shows PipeProof’s high-level block diagram. The
inputs to PipeProof are a set of µspec axioms describing
microarchitectural orderings, an ISA-level MCM specification,
mappings (to link ISA-level and microarchitectural execu-



Axiom "Mappings_po":
forall microop "i", forall microop "j",
HasDependency po i j => AddEdge ((i, Fetch), (j, Fetch), "po_arch").

Fig. 5: Example mapping axiom for po ISA-level edges on simpleSC.

i1 in
r1…n-1 ⟹

Translate to 
microarch.

fr

i1 in

Some µhb
edge from 

i1 to in

(transitive 
connection)

fr

i1 and in connected by ISA-
level chain of length ≥ 1

Fig. 6: A graphical example of the Transitive Chain (TC)
Abstraction: all possible ISA-level chains connecting i1 to
in (left) can be abstracted as some µhb edge (the transitive
connection) between the nodes of instructions i1 and in (right).
The red µhb edge is the microarchitectural mapping of the fr
edge from in to i1.

tions), and chain invariants (to abstractly represent repeating
ISA-level patterns). As its output, PipeProof will either prove
the microarchitecture correct for all possible programs or
return an indication that the microarchitecture could not be
verified.

PipeProof’s overall operation has three high-level steps:
1) Prove chain invariants correct (Section IV-B).
Then for each forbidden ISA-level pattern in the ISA-level

MCM specification:
2) Prove Transitive Chain (TC) Abstraction support for

the microarchitecture and the ISA-level pattern (Sec-
tion IV-A).

3) Prove Microarchitectural Correctness for the microarchi-
tecture and the ISA-level pattern (this section).

The proofs of TC Abstraction support and chain invariants
are supporting proofs on which PipeProof’s main Microar-
chitectural Correctness Proof builds. The Microarchitectural
Correctness Proof proves Theorem 1 below.

Theorem 1 (Microarchitectural Correctness): For each ISA-
level execution ISAExec := (Instrs,Rels) where Rels
exhibit a pattern forbidden by the ISA-level MCM, all mi-
croarchitectural executions (Instrs,N,E) corresponding to
ISAExec are unobservable (i.e., their µhb graphs are cyclic).

This section describes the Microarchitectural Correctness
Proof in detail, beginning with the structure of the ISA-
level executions PipeProof verifies (Section III-A) and their
translation to equivalent microarchitectural executions (Sec-
tion III-B). The Microarchitectural Correctness proof uses
an abstraction refinement approach that leverages the TC
Abstraction (Section III-C) to model executions. PipeProof’s
refinement process involves examining abstract counterex-
amples (Section III-D) and refining the abstraction through
concretization and decomposition (Section III-E). The section

concludes by explaining when PipeProof’s algorithm is able
to terminate (Section III-F).

A. Symbolic ISA-Level Executions

PipeProof works with ISA-level executions that are similar
to the ISA-level execution of mp in Figure 1b, but it uses
symbolic instructions. In other words, the instructions in
such ISA-level executions do not have specific addresses or
values. The symbolic version of the ISA-level execution in
Figure 1b would consist of four instructions i1, i2, i3, and i4,
connected by the po, rf , and fr edges as shown, but nothing
more would be known about the four instructions beyond the
constraints enforced by the ISA-level relations. For instance,
the instructions connected by po would be known to be on the
same core, and the rf edge between i2 and i3 would enforce
that i2 and i3 had the same address and value. However, the
specific address and value of i2 and i3 could be anything. Such
a symbolic ISA-level execution represents not only the ISA-
level execution of mp in Figure 1b, but any ISA-level execution
comprised of the cycle3 po; rf ; po; fr. Thus, verifying such a
symbolic ISA-level execution checks the instance of the ISA-
level pattern in that execution across all possible addresses and
values, as required for complete verification.

B. Mapping ISA-level Executions to Microarchitecture

To verify that a forbidden ISA-level execution is microar-
chitecturally unobservable, one needs to translate the ISA-level
execution to its corresponding microarchitectural executions4.
PipeProof’s complete verification requires such translation for
any arbitrary ISA-level execution, not just a particular program
instance. PipeProof’s microarchitectural executions are similar
to the µhb graph in Figure 2a, but like PipeProof’s ISA-level
executions, they operate on symbolic instructions which do
not have specific addresses and values.

An ISA-level execution’s instructions can be translated by
instantiating the µspec microarchitectural axioms for those in-
structions. Translating ISA-level relations to microarchitecture
is harder because the microarchitectural constraints implied by
an ISA-level relation differ between microarchitectures. Thus,
PipeProof requires user-provided mappings to translate indi-
vidual ISA-level edges to their corresponding microarchitec-
tural constraints. These mappings are additional µspec axioms
that restrict the executions examined by PipeProof’s solver to
the microarchitectural executions where the mapped ISA-level
edge exists between its source and destination instructions.

3A semicolon (;) denotes relational composition. For example, r1; r2
denotes a sequence of two ISA-level edges r1 and r2 where the destination
instruction of r1 is the source instruction of r2.

4There are usually multiple microarchitectural executions corresponding to
a single ISA-level execution.



(Checks of other possible 
transitive connections…)

Can concretize?
No

Acyclic graph =>
Abstract Counterexample, 

rerun refinement loop

Cyclic graph =>
Represented microarchitectural 

executions correctly unobservable

Required edge from p to q 
does not exist =>

Do not consider further

(Other decompositions…)

Return 
Counterexample

Yes

Consider all Transitive Connection Decompositions

i1 in

IF

EX

WB

fr

Some 
Tran.
Conn.

p

i1 in-1

IF

EX

WB

rf

r

q

in

fr

Decomposition A (Valid)✓

p

i1 in-1

IF

EX

WB

rf

r

q

in

fr

Decomposition C (Invalid)

p

i1 i2

IF

EX

WB

co

r

q

in

fr

Decomposition B (Valid) ?

Consider all possible Transitive Connections (light green arrows)

p

i1

r

q

in

IF

EX

WB

fr

Acyclic graph => Microarch. 
executions represented by 

this graph may be observable

Abstract Counterex.
(AbsCex) ?

i1 in

IF

EX

WB

fr

Graph cyclic => Microarch. 
executions represented by 

this graph are unobservable

Abstraction Sufficient
(NoDecomp)

✓ …



i1 in

IF

EX

WB

co

Some 
Tran.
Conn.

i1 in

IF

EX

WB

rf

Some 
Tran.
Conn.

… … …

Cycles containing fr Cycles containing rf

i1 in

IF

EX

WB

po

Some 
Tran.
Conn.

Cycles containing po Cycles containing co

N/A

p

r

q

Fig. 7: PipeProof checking that non-unary ISA-level cycles forbidden by SC are unobservable on simpleSC with the help of
the Transitive Chain Abstraction. This figure focuses on the cycles containing fr edges. Acyclic graphs like AbsCex are abstract
counterexamples: they may be concretized into real counterexamples or broken down into possible decompositions which are
each checked in turn. Decompositions A and B are valid decompositions (subsets) of AbsCex, because they guarantee the
edge from p to q in AbsCex. Decomposition C does not guarantee this edge, and is thus invalid and not considered further.
Decomposition A strengthens the TC Abstraction enough to make the graph cyclic (and thus unobservable) as required.
Decomposition B is valid but acyclic, so its abstraction needs to be refined further.



Figure 4 shows the µhb edges enforced by mappings of the
ISA-level edges fr, rf , po, and co on simpleSC. Figure 5
shows the mapping axiom for po edges on simpleSC, which
translates a po edge between instructions i and j to a µhb
edge between the Fetch stages of those instructions. Such
an edge can be seen between i1 and i2 in the po case of
Figure 4. This edge between the Fetch stages indirectly
induces edges between the Execute and Writeback stages
of the instructions as well, through axioms like IF_FIFO
from Figure 2b. These µhb edges are also shown in Figure 4,
and reflect the in-order nature of simpleSC’s pipeline.

C. The TC Abstraction: Representing Infinite ISA-level Chains

Symbolic analysis and the use of mappings for ISA-level
edges allow a single ISA-level cycle to be translated to
the microarchitectural level for all possible addresses and
values. However, there are an infinite number of possible
ISA-level cycles that match a forbidden ISA-level pattern like
cyclic(po∪ co∪ rf ∪ fr) (which are the executions forbidden
by SC). Conceptually, all of these ISA-level cycles need to
be verified as being unobservable in order to ensure that the
microarchitecture is correct across all possible programs. Such
unbounded verification is made possible by using inductive
approaches. PipeProof achieves unbounded verification by
inductively modelling executions using a novel Transitive
Chain (TC) Abstraction. Specifically, PipeProof uses the TC
Abstraction to efficiently represent ISA-level chains (defined
below):

Definition 3: An ISA-level chain is an acyclic sequence
of ISA-level relations r1; r2; r3...; rn. An example ISA-level
chain is po; rf ; po from Figure 1b.

The TC Abstraction is the representation of an ISA-level
chain of arbitrary length between two instructions i1 and in
as a single µhb edge between i1 and in at the microarchi-
tecture level. None of the intermediate instructions in the
chain are explicitly modelled. Abstract executions are those
executions where the TC Abstraction is used to represent an
ISA-level chain. Meanwhile, concrete executions are those
executions where all instructions and ISA-level edges are
explicitly modelled; that is, where nothing is abstracted using
the TC Abstraction. (Instructions in concrete executions are
still symbolic.)

Figure 6 illustrates the TC Abstraction for ISA-level cycles
containing the fr edge. The left of the figure represents all
possible non-unary ISA-level cycles (i.e. the cycles containing
more than one instruction5) that contain an fr edge. In these
cycles, i1 may be connected to in by a single ISA-level
edge or by a chain of multiple ISA-level edges (the transitive
chain). These cycles include the ISA-level cycle po; rf ; po; fr
from Figure 1b (since it contains an fr edge), as well as an
infinite number of other cycles containing fr. Using the TC
Abstraction, any microarchitectural execution (as seen on the
right) corresponding to such an ISA-level cycle represents the

5The number of unary cycles (those where an instruction is related to itself)
is small, so PipeProof explicitly enumerates and checks them separately.

chain between i1 and in by some µhb edge (the transitive
connection) from a node of i1 to a node of in. (The red
µhb edge from in to i1 is the mapping of the fr edge to the
microarchitecture.) Thus, if the µhb graph on the right is ver-
ified to be unobservable for all possible transitive connections
from i1 to in, then the microarchitecture is guaranteed to be
correct for all possible ISA-level cycles containing the fr edge.
PipeProof automatically checks that the microarchitecture and
ISA-level pattern support the TC Abstraction (Section IV-A)
before using it to prove microarchitectural correctness.

The Transitive Chain Abstraction’s capability to represent
ISA-level chains of arbitrary length using a single transitive
connection from the start to the end of the chain is the key
insight underlying PipeProof’s complete verification across all
programs. This representation allows PipeProof to conduct un-
bounded verification while only explicitly modelling as many
instructions as needed to prove microarchitectural correctness.
The transitive connection models the effects of intermediate
instructions in the ISA-level chain without explicitly modelling
the instructions themselves, allowing for efficient modelling
and verification of all possible ISA-level cycles. The TC
Abstraction is both weak enough to apply to a variety of
microarchitectures and also strong enough (with appropri-
ate refinements discussed below) to prove microarchitectural
MCM correctness.

D. Abstract Counterexamples

The TC Abstraction guarantees the presence of some µhb
edge between the start and end of an ISA-level chain, such as
that between i1 and in in Figure 6. To prove microarchitectural
correctness using the TC Abstraction, PipeProof must show
that for each possible transitive connection between i1 and in,
all possible microarchitectural executions corresponding to the
ISA-level cycles being checked are unobservable.

Figure 7 shows PipeProof’s procedure for proving Theo-
rem 1 on simpleSC. The figure focuses on the verification of
ISA-level cycles containing at least one fr edge; the process
is repeated for other types of cycles in the pattern (for SC,
this equates to cycles containing po, co, or rf edges). For
some transitive connections, like the one in the NoDecomp
case, the initial µhb graph of the abstract execution is cyclic.
This proves the unobservability of all concrete executions
represented by NoDecomp, as required for microarchitectural
correctness.

In most cases, however, the initial abstract execution graphs
will be acyclic, as is the case for AbsCex in Figure 7. This
is because the TC Abstraction’s guarantee of a single µhb
edge (the transitive connection) between the start and end
of an ISA-level chain is necessarily rather weak in order to
be general across all possible ISA-level chains that match a
forbidden ISA-level pattern. The weakness of the guarantee is
also necessary in order for the TC Abstraction to be general
enough to support a variety of microarchitectures.

In abstraction refinement [8], cases such as AbsCex that
appear to violate the property being checked but contain an
abstraction are called abstract counterexamples. They may



correspond to concrete (real) counterexamples. They may also
be spurious. When spurious, all concrete cases represented by
the abstract counterexample are in fact correct.

In PipeProof, an abstract counterexample such as AbsCex
represents two types of concrete executions. First, i1 and in
may be connected by a single ISA-level edge. On the other
hand, i1 and in may be connected by a chain of multiple ISA-
level edges. To check whether an abstract counterexample is
spurious or not, PipeProof conducts concretization and decom-
position (the refinement loop) to handle the aforementioned
two cases.

E. Concretization and Decomposition: The Refinement Loop

In the concretization step, PipeProof checks the case where
i1 is connected to in by a single ISA-level edge. PipeProof
does so by replacing the transitive connection between i1 and
in with a single ISA-level edge that causes the resultant ISA-
level cycle to match the forbidden ISA-level pattern. This
concrete execution must be microarchitecturally unobservable.
For example, when trying to concretize AbsCex in Figure 7,
PipeProof checks the ISA-level cycle po; fr, then co; fr, then
rf ; fr, and finally fr; fr, since each of these are ISA-level
cycles forbidden by SC that arise from replacing the transitive
connection of AbsCex with a single ISA-level edge. If any
of these concrete executions is found to be observable, then
the microarchitecture is buggy and PipeProof returns the
observable ISA-level cycle as a counterexample.

If executions where the transitive connection is replaced
by a single ISA-level edge are found to be unobservable,
PipeProof then inductively checks the case where i1 is con-
nected to in by a chain of multiple ISA-level edges through
decomposition. PipeProof decomposes the transitive chain of
n − 1 ISA-level edges6 into a transitive chain of n − 2 ISA-
level edges represented by a transitive connection, and a single
concrete ISA-level edge. This also results in the explicit mod-
elling of an additional instruction. The concrete ISA-level edge
and instruction added by the decomposition are “peeled off”
the transitive chain. The key idea behind decomposition of the
transitive chain is that the explicit modelling of an additional
instruction and ISA-level edge enforces additional microarchi-
tectural constraints that may be enough to create a cycle in the
graph. If a cycle is created, the decomposition is unobservable,
completing the correctness proof for that case. If all possible
decompositions of an abstract counterexample are found to
be cyclic (unobservable), then the abstract counterexample is
spurious and can be ignored. If any decomposition is found
to be acyclic, then that decomposition constitutes an abstract
counterexample itself, and concretization and decomposition
are repeated for it. Decomposing the chain one instruction at
a time improves efficiency by ensuring that PipeProof does
not explicitly model more instructions than needed to prove
microarchitectural correctness.

Figure 7 shows three (of many) possible decompositions of
AbsCex. In Decomposition A, an rf edge has been peeled off

6Here, n is an abstract parameter used for induction. It has no concrete
value.

the right end of the transitive chain. Peeling off the rf edge
strengthens the abstraction by connecting node p to node r (an
edge not present in AbsCex). This creates a cycle in the µhb
graph, rendering the execution unobservable. This completes
the correctness proof for this decomposition.

Decomposition B in Figure 7 shows a case where a co edge
(rather than an rf edge) is peeled off the transitive chain.
Furthermore, the co edge is peeled off the left end of the
transitive chain rather than the right. Peeling off the co edge
refines the abstraction, but this is still not enough to create
a cycle in the µhb graph. Thus, Decomposition B is itself an
abstract counterexample, and the process of concretization and
decomposition will be repeated for it.

To ensure completeness of verification when decomposing
transitive chains, PipeProof enumerates all possibilities for the
concrete ISA-level edge that could be peeled off (using the
procedure from Section IV-E) and for the transitive connection
representing the remaining chain of length n− 2. Verifying a
single decomposition is equivalent to verifying a subset of the
executions of its parent abstract counterexample. As such, any
valid decomposition must guarantee the transitive connections
of its parent abstract counterexamples. Decompositions that
violate this requirement do not represent executions that are
modelled by their parent abstract counterexamples, and hence
they are discarded.

For example, Decomposition C in Figure 7 is an invalid
decomposition of AbsCex because it does not guarantee
the transitive connection of its parent AbsCex (a µhb edge
between nodes p and q) as Decompositions A and B do.
PipeProof filters out any such decompositions that do not
guarantee the transitive connections of their parent abstract
counterexamples; it does not consider them further.

PipeProof alternates between peeling from the left and
peeling from the right when inductively decomposing tran-
sitive chains. For example, Decomposition B was created by
peeling from the left of AbsCex, so when concretization and
decomposition is rerun for Decomposition B, the next ISA-
level edge will be peeled from the right. PipeProof alternates
in this manner because creating a cycle in the graph through
decomposition often requires connecting more nodes to either
side of the transitive connection.

F. Termination of the PipeProof Algorithm
In many cases, repeatedly peeling off instructions from

the transitive chain strengthens the TC Abstraction enough
to prove microarchitectural correctness. For the remaining
cases, PipeProof requires user-provided chain invariants (Sec-
tion IV-B) to abstractly represent infinite repeated peelings of
a specific pattern of ISA-level edges and ensure termination of
the refinement loop. For the SC and TSO case studies detailed
in Section VI, peeling off a maximum of 9 instructions from
the transitive chain was sufficient (along with chain invariants)
to prove correctness of the microarchitectures.

IV. SUPPORTING PROOFS AND TECHNIQUES

PipeProof’s Microarchitectural Correctness proof relies on
a number of supporting proofs and modelling techniques in or-



⟹
i1 in

IF

EX

WB

rn in+1

Some 
Tran 

Conn.

i1 in+1

IF

EX

WB

Some 
Transitive 

Connection

If rn 𝝐 𝒑𝒐, 𝒄𝒐, 𝒓𝒇, 𝒇𝒓 , show that

Fig. 8: Graphical depiction of the inductive case of the
TC Abstraction support proof for simpleSC. Extending a
transitive chain by an additional instruction and ISA-level
edge rn should extend the transitive connection to the new
instruction as well.

der to prove correctness. This section explains these proofs and
techniques, beginning with the TC Abstraction support proof
(Section IV-A). This proof ensures that a microarchitecture
and ISA-level pattern support the TC Abstraction, enabling
it to be used in the Microarchitectural Correctness proof.
Meanwhile, chain invariants (Section IV-B) are often required
to ensure the termination of PipeProof’s abstraction refinement
loop. Theory Lemmas (Section IV-C) are required to constrain
PipeProof’s symbolic analysis to realisable microarchitectural
executions. PipeProof must also use an over-approximation
of microarchitectural constraints (Section IV-D) in order to
guarantee soundness. Finally, Section IV-E describes how
PipeProof inductively generates ISA-level edges matching a
pattern when decomposing transitive chains.

A. Ensuring Microarchitectural TC Abstraction Support

As discussed in Section III-C, PipeProof uses the Transitive
Chain (TC) Abstraction to represent the infinite set of ISA-
level cycles that match a pattern like cyclic(po ∪ co ∪ rf ∪
fr). The TC Abstraction enables PipeProof to abstract away
most of the instructions and ISA-level relations in these ISA-
level cycles and represent them with a single µhb edge (the
transitive connection) at the microarchitecture level.

The TC Abstraction is key to PipeProof’s complete verifi-
cation. However, to use the TC Abstraction in its Microar-
chitectural Correctness proof (Section III), PipeProof must
first ensure that the microarchitecture and ISA-level pattern
being verified support the TC Abstraction. If the TC Abstrac-
tion cannot be proven to hold for a given microarchitecture,
then PipeProof cannot prove the microarchitecture correct.
PipeProof’s verification is sound; it will never falsely claim
that the TC Abstraction holds without proving it.

The theorem for microarchitectural TC Abstraction support
is provided below, following the definition of an ISA-level
subchain:

Definition 4: An ISA-level chain r′1; r
′
2; r
′
3...; r

′
k is a sub-

chain of an ISA-level cycle or chain r1; r2; r3...; rn if k < n
and ri = r′i for i = 1 to k. In other words, the subchain is the
first k edges of the chain. For example, in Figure 1b, po; rf ; po
is a subchain of the cycle po; rf ; po; fr.

Theorem 2: If instructions iA and iB are connected by a
transitive chain (i.e. a subchain of a forbidden ISA-level cycle),

then there exists at least one µhb edge (the transitive connec-
tion) from a node of iA to a node of iB in all microarchitectural
executions in which that subchain is present.

PipeProof tries to automatically prove Theorem 2 induc-
tively for each microarchitecture and ISA-level pattern for
which the TC Abstraction is used.
Base Case: In the base case, we need to show that any single
ISA-level edge isaEdge that could be the start of the ISA-
level chain to be abstracted guarantees a µhb edge between its
source and destination instructions i1 and i2. For example, for
simpleSC, PipeProof checks whether a po, co, rf , or fr edge
between instructions i1 and i2 guarantees a µhb edge between
them. As Figure 4 shows, the microarchitectural mappings of
these ISA-level edges do indeed guarantee edges from i1 to
i2 for simpleSC, so the base case passes.
Inductive Case: Figure 8 illustrates the inductive case for
simpleSC. Given an ISA-level transitive chain between i1
and in that implies a µhb transitive connection from i1 to
in, the inductive case must show that extending the transitive
chain with an additional instruction in+1 and ISA-level edge
rn matching the forbidden pattern extends the transitive con-
nection. In other words, the inductive case must show that a
µhb edge from some node of i1 to some node of in+1 exists.

If the combination of a transitive connection from i1 to in
and the microarchitectural mapping of rn is not enough to
guarantee a transitive connection from i1 to in+1, this con-
stitutes an abstract counterexample to Theorem 2. PipeProof
then attempts to concretize and decompose the transitive chain
between i1 and in (as explained in Section III-E) to discover
whether the abstract counterexample is spurious or whether
a concrete ISA-level chain violating Theorem 2 exists. ISA-
level chains that fail Theorem 2 are henceforth referred to as
failing fragments.

As in the Microarchitectural Correctness proof (Section III),
chain invariants (Section IV-B) are used to abstractly represent
cases where an infinite number of edges could be peeled
off without terminating. The abstraction refinement through
decomposition continues until either the abstraction is strong
enough to guarantee a transitive connection between i1 and
in+1 in all cases (thus proving Theorem 2), or a failing
fragment is found and returned to the user as failing the proof
of Theorem 2.
Strength of Theorem 2: Theorem 2 is stronger than what
the Microarchitectural Correctness proof (Section III) needs.
Theorem 2 requires the transitive chain to guarantee a tran-
sitive connection both when the transitive chain is part of
a forbidden ISA-level cycle in the overall execution (as the
Microarchitectural Correctness proof requires) and when it is
not part of such an ISA-level cycle (as seen in Figure 8).
This enables Theorem 2 to be proven by induction. As
Figure 8 shows, the inductive case consists of adding an extra
instruction and ISA-level edge to the case guaranteed by the
induction hypothesis, resulting in a proof by induction.

On the other hand, proving the existence of a transitive
connection only in the presence of a forbidden ISA-level cycle
is not as straightforward. In the inductive case of such a



i1 i4 i5
fr

i3
po

i1 i4 i5
fr

i2
po_plus

(a) (b) (c)

i1 i3 i4
fr

i2
po

i5
po

Abstract Counterexample Repeating ISA-Level Pattern Chain Invariant Applied

Fig. 9: Peeling off edges from abstract counterexamples like (a) may cause repetitions of the same pattern, like po in (b).
Naively continuing to peel off repeated edges in this manner may prevent the refinement loop from terminating. Chain invariants
efficiently represent an arbitrary number of repetitions of such ISA-level patterns, as shown by po plus in (c), allowing
PipeProof’s refinement loop to terminate.
Axiom "Invariant_poplus":
forall microop "i", forall microop "j",
HasDependency po_plus i j => AddEdge((i,Fetch),(j,Fetch),"") /\ SameCore i j.

Fig. 10: Chain invariant for repeated po edges (i.e. po plus) on the simpleSC microarchitecture.

proof, the induction hypothesis would guarantee a transitive
connection for a chain between instructions i1 and in only
if the chain is part of a forbidden ISA-level cycle, similar to
Figure 6. Extending this chain of length n − 1 to a chain of
length n (as required for an inductive proof) involves removal
of one of the “loopback” edges connecting in to i1 (fr in
Figure 6). This is because a loopback edge connecting in
to i1 may not exist in arbitrary forbidden ISA-level cycles
containing the extended transitive chain. If a loopback edge
is removed, the induction hypothesis no longer guarantees
a transitive connection between i1 and in, and the proof
cannot build on the guarantees for the chain of length n− 1.
In a nutshell, the induction hypothesis for such a proof is
quite weak, so PipeProof cannot currently prove the necessary
property, and attempts to prove the stronger Theorem 2 instead.
This also means that some correct microarchitectures that do
not satisfy Theorem 2 cannot be proven correct by PipeProof
at present. We intend to address this issue in future work.

As a result of Theorem 2 being stronger than required, if a
failing fragment is found, the microarchitecture may or may
not be buggy. If the microarchitecture is buggy, PipeProof
can generate an ISA-level cycle that exhibits the bug as a
counterexample through its Cyclic Counterexample Genera-
tion procedure. This procedure checks all possible forbidden
ISA-level cycles of length 1, then length 2, and so on for
microarchitectural observability. At each iteration, if any of
the cycles are microarchitecturally observable, the observable
cycle is returned to the user as a counterexample. Otherwise,
the procedure increases the size of the examined cycles by 1
and repeats the process.

B. The Need for Chain Invariants and their Proofs
When decomposing TC Abstractions instruction-by-

instruction as outlined in Section III-E, it is possible to
peel off concrete ISA-level edges that match a repeating
pattern, but for the abstraction to never be strong enough to
prove the required property (Theorem 1 or 2). For example,
Figure 9a shows an abstract counterexample to Theorem 2

on simpleSC where there is no µhb connection between
instructions i1 and i5. When decomposing this abstract
counterexample, it is possible to peel off a po edge from
the transitive chain, as shown in Figure 9b, and still have
no µhb connection between i1 and i5. In fact, one can
continue peeling off po edges in this manner ad infinitum,
while never being able to guarantee a µhb edge between
i1 and i5. Such a case will result in the refinement loop of
the Microarchitectural Correctness proof or TC Abstraction
support proof being unable to terminate.

For refinement loops to terminate in such cases, PipeProof
needs a way to efficiently represent such repeating patterns.
To do so, PipeProof utilises user-provided7 chain invariants.
These chain invariants are additional µspec axioms which
specify microarchitectural guarantees about repeated ISA-level
edge patterns. Users can examine PipeProof’s status updates
to detect when the peeling off of repeated edge patterns is
preventing termination of a refinement loop. This is a sign that
the user needs to provide PipeProof with a chain invariant for
the repeated edge pattern in question.

Figure 10 shows an example chain invariant for simpleSC
that abstracts a chain of successive po edges as a single
po plus8 edge. This invariant states that if two instructions i
and j are connected by a chain of po edges of arbitrary length,
then at the µhb level, i and j are guaranteed to be on the same
core and to have a edge between their Fetch stages (which in
turn implies edges between their Execute and Writeback
stages due to the in-order simpleSC pipeline). An ISA-level
chain of successive po edges of arbitrary length on simpleSC
can then be abstractly represented by a single po plus edge
(and the guarantees of its invariant), as seen in Figure 9c.

PipeProof automatically searches for concrete ISA-level
patterns that can be abstracted by user-provided invariants in

7Future work could also use known invariant generation techniques to
automatically discover invariants for a given concrete repeating ISA-level
pattern. The search space of possible chain invariants is relatively small, and
can be reduced further by restricting the search to specific invariant templates.

8The plus in po plus is from Kleene plus.



each iteration of the refinement loop. The search for patterns
matching available invariants is conducted edge by edge,
similar to regex matching. Supported invariant patterns are re-
peated single edges (e.g., po) or repeated chains (e.g., po; rf ).
If PipeProof finds a concrete ISA-level pattern matching an
invariant, it replaces the pattern with its invariant version. On
subsequent decompositions, PipeProof’s ISA Edge Generation
procedure (Section IV-E) restricts the ISA-level edges that can
be peeled off to those that cannot be subsumed within an
adjacent chain invariant. For example, any edge peeled off
from the right of the transitive chain in Figure 9c cannot be a
po edge, as any such po edge is already subsumed within the
po plus edge between i2 and i4. This prevents edges matching
an invariant pattern from being peeled off a transitive chain
endlessly, allowing the refinement loop to terminate in such
cases.

To help ensure verification soundness, PipeProof proves
chain invariants inductively before using them in its proofs.
If the proof of any chain invariant fails, PipeProof informs the
user of the failure and does not proceed further. As an example
of a chain invariant proof, consider Figure 10’s invariant.
PipeProof first checks the base case—whether a single po
edge between two instructions i and j guarantees that they
will be on the same core and have an edge between their
Fetch stages. The po edge mapping and theory lemmas (Sec-
tion IV-C) guarantee this. For the inductive case, PipeProof
assumes that i and j are connected by a chain of a single po
edge followed by a po plus edge (i.e. a po-chain of arbitrary
length), and that the invariant holds for the po plus portion of
the chain. It then checks if i and j are on the same core and
have an edge between their Fetch stages. This property is
guaranteed by the po edge mapping, theory lemmas, and the
invariant from the induction hypothesis, completing the proof.

C. Theory Lemmas

The symbolic analysis conducted by PipeProof can allow
inconsistent assignments to µspec predicates that are incom-
patible with any microarchitectural execution. For example,
in any execution containing three instructions i, j, and k, if
i and j have the same data (SameData i j is true), and
j and k have the same data (SameData j k is true), then
logically i and k must have the same data (SameData i
k must be true). In other words, the SameData predicate
is transitive. However, naive symbolic analysis will not re-
quire SameData i k to be true in such a case. Thus, to
enforce such constraints, PipeProof provides a set of Theory
Lemmas9 for µspec predicates that is included in every call to
PipeProof’s solver. These constraints enforce universal rules
(like the transitivity of SameData) that must be respected by
every microarchitectural execution.

D. Over-Approximating to Ensure an Adequate Model

PipeProof verifies executions of an arbitary number of
instructions while only modelling a small subset of those

9These lemmas are very similar to the lemmas produced by a theory solver
in an SMT setup.

t

i1 i2

IF

EX

WB

fr

v

i3
co

SubsetExec

u

t

i1 i2

IF

EX

WB

fr

v

i3

SubsetWithExternal

u

i4
rf

co

Fig. 11: The load i2 in SubsetExec cannot read its value
from the explicitly modelled stores i1 or i3 without adding
one of the dotted edges and making the graph cyclic. This
appears to make the execution unobservable. However, as
shown in SubsetWithExternal, another instruction i4 out-
side the ISA-level cycle can source i2 while keeping the graph
acyclic, making SubsetWithExternal an abstract counterex-
ample. PipeProof must over-approximate microarchitectural
constraints to account for instructions like i4 that are not
explicitly modelled.

instructions and their constraints on the execution. Some
of the instructions in an ISA-level cycle may be abstractly
represented using the TC Abstraction or chain invariants, while
other instructions in the execution that are not part of the ISA-
level cycle are also not explicitly modelled. For its verification
to be sound, PipeProof must ensure that the subset of an
execution’s constraints that it models is adequate: the subset
must be an over-approximation of the constraints on the entire
execution. In other words, it should never be the case that an
execution is deemed to be unobservable when modelling only
the subset of its constraints, but is actually observable.

For example, consider the abstract execution SubsetExec
on simpleSC in Figure 11, where an ISA-level cycle is
abstractly represented with the help of the TC Abstraction.
Consider also the constraint (henceforth called LoadSource)
on every ISA-level execution that for every load l which does
not read the initial value of memory, there exists a store s

for which s
rf−→ l, corresponding to s being the store from

which l reads its value. Instruction i2 in SubsetExec is a
load (since it is the source of an fr edge), and so must
satisfy the LoadSource constraint. If PipeProof attempted
to satisfy LoadSource for i2 using only the explicitly
modelled instructions, i2 could be sourced either from i1 (i.e.
i1

rf−→ i2) or from i3 (i3
rf−→ i2). If sourcing from i1, the

microarchitectural mapping of the rf edge adds a µhb edge
from node t to node u, giving us a cycle in the µhb graph.
Likewise, if i3 is used as the source, i3

rf−→ i2 maps to a
µhb edge from node v to node u, once again creating a cycle
in the graph. Thus, if the analysis only considered explicitly
modelled instructions, it would deduce that all graphs for this
case are cyclic (i.e. unobservable), and that this case need not
be concretized and decomposed.

However, this reasoning would be incorrect. For instance,
it is perfectly valid for an execution containing the ISA-



level cycle from SubsetExec to have an additional instruction
i4 that is not part of the ISA-level cycle but sources the
value of i2 (i.e. i4

rf−→ i2). Figure 11 depicts this variant as
SubsetWithExternal, which satisfies LoadSource while
maintaining an acyclic graph. This indicates (correctly) that
the ISA-level cycle from SubsetExec is actually an abstract
counterexample and must be concretized and decomposed.

To avoid unsoundly flagging executions such as
SubsetExec as unobservable, PipeProof conservatively
over-approximates by replacing every exists clause in
the µspec with a Boolean true. This suffices to guarantee
an adequate model, since exists clauses are the only
µspec clauses whose evaluation can change from false to
true when an additional instruction is explicitly modelled.
In the case of SubsetExec, the over-approximation results
in LoadSource always evaluating to true, ensuring that
SubsetExec is treated as an abstract counterexample as
required for soundness.

This over-approximation forces PipeProof to work only
with a subset of the overall true microarchitectural ordering
constraints; these may or may not be sufficient to prove
the design correct. There exist microarchitectures for which
this subset is not sufficient, and PipeProof currently cannot
prove the correctness of those designs. However, the over-
approximation of microarchitectural constraints is sufficient to
prove the correctness of the designs in this paper.

E. Inductive ISA Edge Generation

There are often an infinite number of ISA-level executions
that can match a forbidden ISA-level pattern. Thus, PipeProof
must reason about these ISA-level executions inductively to
make verification feasible. PipeProof’s refinement loop induc-
tively models additional instructions through concretization
and decomposition (Section III-E and Figure 7). As such,
PipeProof must also inductively generate the possible ISA-
level relations that could connect these modelled instructions
such that the overall execution matches the forbidden ISA-
level pattern being checked.

Given an ISA-level pattern pat, PipeProof’s ISA Edge Gen-
eration procedure returns all possible choices (edge, remain),
where edge is a possible initial or final edge of pat, and
remain is the part of pat that did not match edge. If peeling
from the left of a transitive chain, the procedure returns cases
where edge is an initial edge. If peeling from the right, the
procedure returns cases where edge is a final edge.

For example, if decomposing a transitive chain represent-
ing the pattern (po ∪ co); rf ; fr, the ISA Edge Generation
procedure would return (po, (rf ; fr)) and (co, (rf ; fr)) if
peeling from the left, so either po or co could be peeled off.
Likewise, if peeling from the right, the procedure would return
(fr, ((po ∪ co); rf)), so only fr could be peeled off.

V. PIPEPROOF OPTIMIZATIONS

PipeProof implements two optimizations that improve its
runtime by greatly reducing the number of cases considered.
This section explains these optimizations.

A. Covering Sets Optimization

The TC Abstraction guarantees at least one transitive con-
nection between the start and end of an ISA-level chain
that it represents. Thus, PipeProof needs to verify correct-
ness for each possible transitive connection when using the
TC Abstraction to represent an ISA-level chain. As seen in
Figure 7, a new set of transitive connections comes into
existence each time a transitive chain is decomposed. This can
quickly lead to a large number of cases to consider. Even the
simpleSC microarchitecture has 9 possibilities (3 nodes ∗ 3
nodes) for transitive connections between any two instructions.
To mitigate this case explosion, PipeProof implements the
Covering Sets Optimization to eliminate redundant transitive
connections.

The key idea behind the Covering Sets Optimization is
that if in a given scenario, a and b are possible transitive
connections, and every µhb graph containing a also contains
b, then it is sufficient to just check correctness when b is
the transitive connection. In other words, b covers a. For
example, AbsCex in Figure 7 has a transitive connection
between nodes p and q. This transitive connection covers other
possible transitive connections such as the one from p to r
used in NoDecomp. This is because there is no possible µhb
graph satisfying the microarchitectural axioms that contains an
edge from p to r without also having an edge from p to q (by
transitivity). Given a set of transitive connections conns for
a given scenario along with all other scenario constraints, the
Covering Sets Optimization eliminates transitive connections
in conns that are covered by other transitive connections in
the set. This optimization significantly improves PipeProof
runtime (details in Section VI-A).

B. Eliminating Redundant Work Using Memoization

Figure 7 shows PipeProof’s procedure for proving that
simpleSC is a correct implementation of SC. PipeProof first
checks that all ISA-level cycles containing fr are microar-
chitecturally unobservable, and then does the same for cycles
containing rf , po, and co. However, there is notable overlap
between these four cases. For example, the ISA-level cycle
po; rf ; po; fr from Figure 1b contains po, rf , and fr edges.
A naive PipeProof implementation would verify this cycle
(directly or indirectly through the TC Abstraction) 3 times:
once as a cycle containing po, once as a cycle containing rf ,
and once as a cycle containing fr. The second and third checks
of the cycle are redundant and can be eliminated.

PipeProof filters out cases that have already been verified by
restricting the edges that can be peeled off during decomposi-
tion. For example, if all ISA-level cycles containing fr have
been verified for simpleSC, then when checking all ISA-
level cycles containing po, fr edges should be excluded from
the choices of edges to peel off. This is because peeling off
an fr edge would turn the ISA-level cycle being considered
into a cycle containing fr (which has already been verified).

Stated formally, given an ISA-level MCM property
acyclic(r1∪r2∪ ...∪rn), if all ISA-level cycles containing ri
have been verified ∀i < j, then the only choices for edges



to peel off when verifying cycles containing rj should be
{rj , rj+1, ..., rn}. This optimization enables our TSO case
study (Section VI-A) to be verified in under an hour.

VI. METHODOLOGY, RESULTS, AND DISCUSSION

A. Methodology and Results

PipeProof is written in Gallina, the functional programming
language of the Coq proof assistant [29]. PipeProof reuses the
Check suite’s µspec parsing and axiom simplification [19],
and extends the Check suite solver to be able to model and
verify executions of symbolic instructions. Writing PipeProof
in Gallina allows for future formal analysis of the code, such
as proving PipeProof’s solver or proof procedures correct.
PipeProof is an automated tool; we do not use the interactive
theorem proving capabilities of Coq to prove microarchitec-
tures. We use the built-in extraction functionality of Coq to
extract our Gallina code to OCaml so it can be compiled and
run as a standalone binary.

We ran PipeProof on two microarchitectures. The
simpleSC microarchitecture has a 3-stage in-order pipeline
and Store→Load ordering enforced. The simpleTSO mi-
croarchitecture is simpleSC with Store→Load ordering re-
laxed for different addresses. We verified simpleSC against
the SC ISA-level MCM, while simpleTSO was verified
against the TSO ISA-level MCM. The overall specification of
TSO consists of two properties: acyclic(po loc∪co∪rf ∪fr)
and acyclic(ppo∪co∪rfe∪fr∪fence) [2]. The po loc relation
models same-address program order, while ppo (preserved
program order) relates instructions in program order except
for Store→Load pairs (which can be reordered under TSO).
The rfe (reads-from external) edge represents when a store
sources a load on another (“external”) core, and fence relates
instructions separated by a fence in program order.

Experiments were run on an Ubuntu 16.04 machine with
an Intel Core i7-4870HQ processor. Table I breaks down
PipeProof runtimes for five cases. We present results for
simpleSC when (i) using vanilla PipeProof algorithms, (ii)
with the Covering Sets Optimization (Section V-A), and
(iii) with Covering Sets and Memoization (Section V-B).
We also present results for simpleTSO when (iv) using
Covering Sets, and (v) with Covering Sets and Memoization.
(simpleTSO was infeasible without the Covering Sets Op-
timization.) PipeProof proves the correctness of simpleSC
in under four minutes using vanilla PipeProof algorithms. The
Covering Sets Optimization brings runtime down to under a
minute, and Memoization reduces runtime further to under
20 seconds. Meanwhile, proving that simpleTSO correctly
implements TSO takes just over five and a half hours with the
Covering Sets Optimization. With the addition of Memoiza-
tion, simpleTSO is verified in under 41 minutes.

While runtimes under an hour are quite acceptable, the ver-
ification of simpleTSO takes more time than the verification
of simpleSC because TSO’s additional relations increase
the number of possibilities for ISA-level edges that can be
peeled off a transitive chain. This has a multiplicative effect

on the number of cases that need to be verified; each peeled-
off instruction may require verification across many transitive
connections, each of which may require further instructions
to be peeled off. Nevertheless, with the help of its optimiza-
tions, PipeProof’s verification of simpleTSO in under an
hour shows that complete automated MCM verification of
microarchitectures can indeed be tractable.

With regard to chain invariants, verifying simpleSC re-
quired one invariant (po plus) to be provided to model re-
peated po edges. Meanwhile, verifying simpleTSO required
five invariants, for repetitions of ppo, fence, po loc, ppo
followed by fence, and fence followed by ppo.

PipeProof’s detection of microarchitectural bugs was quite
fast. As an example, we introduced a flaw into simpleSC
relaxing Store→Load ordering. PipeProof produced a coun-
terexample to that flaw in under a second (both with and with-
out the Covering Sets optimization). Similarly, if Store→Load
ordering for the same address was relaxed on simpleTSO,
the bug was detected in under 2 seconds from the beginning
of the check of the relevant ISA-level pattern.

B. Scalability

To scale performance to more complicated microarchitec-
tures, we can parallelize the implementation of PipeProof’s
algorithm (Section III). The only dependency in the algorithm
is that a given abstract execution (such as AbsCex from
Figure 7) must be checked before any concretizations or
decompositions of it are checked. Apart from this depen-
dency, each abstract or concrete execution can be checked
independently of the others, making the algorithm highly
parallelizable and well-suited to the use of multicore machines
and clusters to improve performance.

C. Future Work

We intend to build on PipeProof in future work by paral-
lelizing it, handling read-modify-write instructions, the RISC-
V [28], Power [13], and ARM [3] ISA-level MCMs, and chain
invariant auto-generation. We would also like to modify the
TC Abstraction support proof (Section IV-A) to only require
that a microarchitecture guarantee a transitive connection when
the transitive chain is part of a forbidden ISA-level cycle in
the overall execution. Likewise, we also intend to derive a
more accurate over-approximation (Section IV-D) that allows
PipeProof to utilise more of the axioms from a microarchitec-
tural ordering specification. These modifications would help
PipeProof scale to more microarchitectures than it currently
does.

VII. RELATED WORK

ISA-level MCMs are often specified in the format used by
the herd tool [2], consisting of irreflexivity, acyclicity, and
emptiness requirements for certain relational patterns. Such
specifications can be created by hand based on consultation
with system architects and dynamic or formal analysis of im-
plementations using litmus tests (e.g.: x86-TSO [2], Power [2],



Component simpleSC simpleSC simpleSC simpleTSO simpleTSO
(w/ Covering Sets) (w/ Covering Sets (w/ Covering Sets) (w/ Covering Sets

+ Memoization) + Memoization)
Chain Invariant Proofs 0.008 sec 0.01 sec 0.008 sec 0.5 sec 0.5 sec
TC Abstraction Support Proofs 2.8 sec 0.9 sec 0.9 sec 71.1 sec 67.3 sec
Microarch. Correctness Proofs 223.1 sec 35.5 sec 18.2 sec 19813.8 sec 2379.5 sec
Total Time 225.9 sec 36.4 sec 19.1 sec 19885.4 sec 2449.7 sec

TABLE I: PipeProof runtimes for simpleSC and simpleTSO with and without Covering Sets and Memoization.

ARM [2, 27], and RISC-V [28]). Relational logic-based ISA-
level MCM specifications can also be automatically generated
based on litmus test outcomes [5].

MCM verification of hardware implementations has mostly
been conducted using litmus test-based approaches, both
static [2, 18, 19, 23, 24, 30] and dynamic [12]. Schemes
for generating better suites of litmus tests have also been
developed [5, 20, 21]. ISA-level MCM analysis has also been
conducted using approaches which check all programs up
to a certain bounded size [33]. All these approaches suffer
from the flaw of being incomplete and possibly missing bugs.
Mador-Haim et al. [22] established a bound on litmus test
completeness when comparing certain consistency models, but
it is still unknown how to detect whether a test suite is
complete with respect to a given parallel system implemen-
tation. As such, there is no way to tell whether passing a
suite of litmus tests means that a design is correct for all
programs. PipeProof surpasses these approaches by conducting
complete, unbounded verification of all possible programs on
a microarchitecture, giving users the confidence that their
microarchitecture is indeed completely correct.

Chatterjee et al. [6] verify operational models of proces-
sor implementations against operationally specified ISA-level
MCMs. Their approach has two main steps. The first step
creates an abstract model of the microarchitectural implemen-
tation by abstracting away the external memory hierarchy, and
verifies it by checking a refinement relation between the two
models using model checking. The second step verifies this
abstract model against an ISA-level MCM specification using
theorem-proving. They only verify small instances (restricted
to two processors, addresses, and values), while PipeProof’s
verification is complete across different core counts, addresses,
and values. They also target verification of operational models,
while PipeProof targets axiomatic models. Finally, they handle
visibility order specifications, whereas PipeProof uses more
general MCM specifications such as the acyclicity of certain
ISA-level edge patterns.

The only complete proofs of microarchitectural MCM cor-
rectness that have been conducted to date are those of the Kami
project [7, 31]. However, Kami utilises the Coq interactive
theorem prover [29] for its proofs, which requires designers
to know proof techniques and requires manual effort. This
is not amenable for many computer architects. In contrast,
PipeProof automatically proves microarchitectural MCM cor-
rectness when provided with an ISA-level MCM specification,
µspec axioms, mappings, and invariants.

VIII. CONCLUSIONS

Memory consistency models and their verification are
paramount to correct parallel system operation. The MCM
verification of a hardware design must be complete in order
to guarantee the correct execution of parallel programs on that
hardware. However, prior automated microarchitectural MCM
verification approaches only conduct bounded or litmus-test-
based verification, which can miss bugs.

In response, this paper introduces PipeProof, the first
methodology and tool for automated complete verification
of axiomatic microarchitectural ordering specifications with
respect to axiomatic ISA-level MCM specifications. PipeProof
can either automatically prove a specified microarchitecture
correct with respect to its ISA-level MCM or it can inform
the user that that the microarchitecture could not be verified,
often providing a counterexample to illustrate the relevant
bug in the microarchitecture. PipeProof’s novel Transitive
Chain Abstraction allows it to inductively model and verify
all microarchitectural executions of all possible programs.
This enables efficient yet complete microarchitectural MCM
verification; PipeProof is able to prove the correctness of
microarchitectures implementing SC and TSO in under an
hour. With PipeProof, verification can be moved much earlier
in the design process. Furthermore, architects no longer have
to restrict themselves to manual proofs of correctness of their
designs in interactive theorem provers to achieve complete
verification. Instead, they can use PipeProof to automatically
prove microarchitectural MCM correctness for all possible
programs, addresses, and values.

ACKNOWLEDGEMENTS

We thank Kedar Namjoshi and the anonymous reviewers for
their helpful feedback. This work was supported in part by the
Applications Driving Architectures (ADA) Research Center, a
JUMP Center co-sponsored by SRC and DARPA, and in part
by the U.S. National Science Foundation through the grants
XPS-15-33837 and XPS-16-28926.

REFERENCES

[1] S. Adve and K. Gharachorloo, “Shared memory consistency models: A
tutorial,” IEEE Computer, vol. 29, no. 12, pp. 66–76, 1996.

[2] J. Alglave, L. Maranget, and M. Tautschnig, “Herding cats: Modelling,
simulation, testing, and data-mining for weak memory,” ACM Transac-
tions on Programming Languages and Systems (TOPLAS), vol. 36, July
2014.

[3] ARM, “ARM Architecture Reference Manual ARMv8, for
ARMv8-A architecture profile,” 2017. [Online]. Available:
https://static.docs.arm.com/ddi0487/b/DDI0487B a armv8 arm.pdf



[4] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability, ser. Frontiers
in Artificial Intelligence and Applications, A. Biere, M. J. H.
Heule, H. van Maaren, and T. Walsh, Eds. IOS Press,
Feb. 2009, vol. 185, ch. 26, pp. 825–885. [Online]. Available:
http://www.cs.stanford.edu/ barrett/pubs/BSST09.pdf

[5] J. Bornholt and E. Torlak, “Synthesizing memory models from frame-
work sketches and litmus tests,” in 38th Conference on Programming
Language Design and Implementation (PLDI), 2017.

[6] P. Chatterjee, H. Sivaraj, and G. Gopalakrishnan, “Shared memory con-
sistency protocol verification against weak memory models: Refinement
via model-checking,” in 14th International Conference on Computer
Aided Verification (CAV), 2002.

[7] J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and Arvind,
“Kami: A platform for high-level parametric hardware specification and
its modular verification,” Proc. ACM Program. Lang., vol. 1, no. ICFP,
2017.

[8] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in 12th International Conference on
Computer Aided Verification (CAV), 2000.

[9] M. Elver, “TSO-CC specification,” 2015. [Online]. Avail-
able: http://homepages.inf.ed.ac.uk/s0787712/res/research/tsocc/tso-
cc spec.pdf

[10] R. Guanciale, H. Nemati, C. Baumann, and M. Dam, “Cache storage
channels: Alias-driven attacks and verified countermeasures,” in 2016
IEEE Symposium on Security and Privacy (SP), May 2016, pp. 38–55.

[11] M. Hachman, “Intel finds specialized TSX enterprise bug on Haswell,
Broadwell CPUs,” 2014, http://www.pcworld.com/article/2464880/intel-
finds-specialized-tsx-enterprise-bug-on-haswell-broadwell-cpus.html.

[12] S. Hangal, D. Vahia, C. Manovit, and J.-Y. J. Lu, “TSOtool: A program
for verifying memory systems using the memory consistency model,” in
19th International Symposium on Computer Architecture (ISCA), 2004.

[13] IBM, “Power ISA version 2.07,” 2013.
[14] Intel, “Intel 64 and IA-32 architectures software

developer’s manual,” 2013. [Online]. Available:
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-
ia-32-architectures-software-developer-manual-325462.pdf

[15] ISO/IEC, “Programming Languages – C,” International Standard
9899:2011, 2011.

[16] ——, “Programming Languages – C++,” International Standard
14882:2011, 2011.

[17] L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” IEEE Transactions on Computing,
vol. 28, no. 9, pp. 690–691, 1979.

[18] D. Lustig, M. Pellauer, and M. Martonosi, “PipeCheck: Specifying and
verifying microarchitectural enforcement of memory consistency mod-
els,” in 47th International Symposium on Microarchitecture (MICRO),
2014.

[19] D. Lustig, G. Sethi, M. Martonosi, and A. Bhattacharjee, “COATCheck:
Verifying Memory Ordering at the Hardware-OS Interface,” in 21st
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2016.

[20] D. Lustig, A. Wright, A. Papakonstantinou, and O. Giroux, “Automated
synthesis of comprehensive memory model litmus test suites,” in 22nd
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2017.

[21] S. Mador-Haim, R. Alur, and M. M. K. Martin, “Generating litmus
tests for contrasting memory consistency models,” in 22nd International
Conference on Computer Aided Verification (CAV), 2010.

[22] ——, “Litmus tests for comparing memory consistency models: How
long do they need to be?” in 48th Design Automation Conference (DAC),
2011.

[23] Y. A. Manerkar, D. Lustig, M. Martonosi, and M. Pellauer, “RTLCheck:
Verifying the memory consistency of RTL designs,” in 50th International
Symposium on Microarchitecture (MICRO), 2017.

[24] Y. A. Manerkar, D. Lustig, M. Pellauer, and M. Martonosi, “CCICheck:
Using µhb graphs to verify the coherence-consistency interface,” in 48th
International Symposium on Microarchitecture (MICRO), 2015.

[25] J. Manson, W. Pugh, and S. Adve, “The Java memory model,” in 32nd
ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL), 2005.

[26] A. Meixner and D. Sorin, “Dynamic verification of memory consistency
in cache-coherent multithreaded computer architectures,” IEEE Trans-
actions on Dependable and Secure Computing (TDSC), 2009.

[27] C. Pulte, S. Flur, W. Deacon, J. French, S. Sarkar, and P. Sewell, “Sim-
plifying ARM concurrency: Multicopy-atomic axiomatic and operational
models for ARMv8,” in 45th ACM SIGPLAN Symposium on Principles
of Programming Languages (POPL), 2018.

[28] RISC-V Foundation, “The RISC-V Instruction Set Manual, Volume I:
User-Level ISA, Document Version 2.2,” May 2017.

[29] The Coq development team, The Coq proof assistant reference
manual, version 8.0, LogiCal Project, 2004. [Online]. Available:
http://coq.inria.fr

[30] C. Trippel, Y. A. Manerkar, D. Lustig, M. Pellauer, and M. Martonosi,
“TriCheck: Memory model verification at the trisection of software,
hardware, and ISA,” in 22nd International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2017.

[31] M. Vijayaraghavan, A. Chlipala, Arvind, and N. Dave, “Modular
deductive verification of multiprocessor hardware designs,” in 27th
International Conference on Computer Aided Verification (CAV), 2015.

[32] M. Walton, “Intel Skylake bug causes PCs to freeze during com-
plex workloads,” 2016, https://arstechnica.com/gadgets/2016/01/intel-
skylake-bug-causes-pcs-to-freeze-during-complex-workloads/.

[33] J. Wickerson, M. Batty, T. Sorensen, and G. A. Constantinides, “Auto-
matically comparing memory consistency models,” in 44th ACM SIG-
PLAN Symposium on Principles of Programming Languages (POPL),
2017.


